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S1 Probe Design

We used ThermoBLAST from DNA Software (Plymouth, MI) to align the 16S primers (27F and 1492R)
against bacterial genomes and find amplicons. We passed these amplicons to a custom Matlab script to design
probes. We chose a sequence length of 11 nucleotides with 5-8 GC nucleotides, without four consecutive G’s
or C’s, and without a G on the 5’ end to avoid self-quenching of the fluorophore. We used Smith-Waterman
alignment in Matlab to pre-screen for probes that self-hybridize and to assess cross-hybridization of probes
amongst the evolving candidate set. To assist in achieving near binary measurements, we considered perfect
matches on all 16S copies to be “1” for a genome, and for imperfect homology, we filtered for sequences
that had neither nine consecutive matches nor a single G-T mismatch. This latter filtering is a proxy for
ensuring that probes have weak, negligible interactions against 16S sequences where they do not have perfect
complementarity. The former filtering for positive hits was intended to avoid the issue of mixtures of barcodes
for any particular bacteria for simplicity in our initial demonstration.

Given a set of filtered, candidate probes, we used a coordinate ascent strategy to iteratively optimize a set.
We hypothesized that barcoding the full-length 16S gene with probes could achieve genus level resolution, as
sequencing the full gene achieves a mix of genus and species resolution. As a result, we encouraged similarity
of the three Staphylococcus species and the two Streptococcous species. Define S as a set of pairs of bacteria
(bi, bj) within a genus that are similar. The complementary set D includes all other bacterial pairs. Let kp,i

represent the 11-mer barcode of bacteria i with probes indexed by p. Coordinate ascent sought to solve:

argmax
p

[ ∑
(bi,bj)∈S

−∥kp,i − kp,j∥22 + log

( ∑
(bi,bj)∈D

∥kp,i − kp,j∥2
)]

+ θ min
(bi,bj)∈D

∥kp,i − kp,j∥2 (S1)

The first term is taken from research in metric learning [1], and the second term (with a weight of θ = 10)
highly rewards some nonzero separation between all bacterial pairs that are intended to be discriminated
between. We chose an initial random set of probes that passed our cross-hybridization check. We iteratively
cycled through a shuffled order of the candidate set of probes, evaluating one probe at a time for replacement
with any of the other probes that passed the initial filtering step. If replacing a probe improved the objective
function, the probe set was updated and the search continued. The algorithm terminated when all probe
sequences had been evaluated for replacement but not replaced. For the chosen set of sequences, we evaluated
the alignment against 16S genes with imperfect homology (the zeroes in the barcodes). As much as possible,
we positioned LNAs at mismatch sites to improve the thermodynamic discrimination against these sequences.
We evaluated all Tm’s in IDT’s OligoAnalyzer, positioning additional LNAs as necessary to reach a sufficient
probe Tm.

S2 Theory: Identifiability with Common Types of Sensors

For estimating λ, the property of identifiability means that there is a one-to-one correspondence between
each realizable distribution of measurements and the Poisson rates λ: if p(y|λ) = p(y|λ′) for all y, then
λ = λ′. From an optimization perspective, identifiability implies that the λ∗ is the unique global optimum
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to the likelihood function if we have infinite measurements. Therefore, identifiability is a necessary condition
for our method to work.

S2.1 Notation

We use bold face upper and lower case letters for matrices and vectors, respectively. Non-bold, lower case
letters represent scalars. We denote the vector of all zeros as 0 with its dimensionality dependent on context.
We use script letters (A, B, etc.) to denote sets. We denote ej as the standard basis vector with ej = 1 and
ei = 0 for all i ̸= j. Let a and b be two arbitrary vectors of the same dimension, and let ai and bi denote
their ith elements. We use supp(a) to denote the support of vector a defined as the index set where ai > 0
for i ∈ supp(a). We use the notation a ⪰ b to imply that ai ≥ bi ∀i, and we use a ≻ b to further imply
the existence of at least one index i where ai > bi. A set in the subscript of a vector such as xA refers to
the subvector of x indexed by the elements of A. We make frequent use of the shorthand

∑
a to denote the

summation over elements of a vector a.

S2.2 Definitions and Assumptions

We treat the dataset of measurements from all partitions in a sensor group as samples of a random variable
y. The signal (i.e., analyte quantities in a partition) x is N -dimensional with x ∼ Poisson(λ∗). Each signal
is measured by M sensors to yield the observation vector y (e.g., M fluorescence measurements). We define
the function f : ZN

+ → RM that is composed of M scalar functions fm : ZN
+ → R. A particular measurement

value ym is determined by the sensor output fm(x) plus some additive, zero-mean random noise nm.

y =


y1
y2
...

yM

 =


f1(x)
f2(x)

...
fM (x)

+


n1

n2

...
nM

 (S2)

Note that the sensor functions fm are group-dependent. For example, each group may have different probes.
We assume that our sensors are monotonic and that our analytes obey responsiveness and fingerprint

equivalence. Given these properties, we prove sufficient conditions for identifiability. Without loss of gener-
ality, we will say that all M sensor functions are monotonic.

Definition S2.1 (Monotonic Sensors). A sensor function fm : ZN
+ → R is monotonic increasing if a ⪰ b ⇒

fm(a) ≥ fm(b) and monotonic decreasing if a ⪰ b ⇒ fm(a) ≤ fm(b).

Monotonic functions are very common and natural; for instance, many sensing modalities have a mono-
tonic increasing sigmoidal response to their input. Any time a Lemma or Theorem relies on monotonicity,
its proof will assume all M sensors are monotonic increasing without loss of generality. Next, we define the
responsiveness property of analytes:

Definition S2.2 (Responsiveness). If f(ei) ̸= f(0), the analyte indexed by i is said to be responsive. If
f(ei) = f(0), then the analyte indexed by i is nonresponsive. If we let B define the set of indices for all such
nonresponsive analytes (i ∈ B), then for any two signals x and x′, f(x) = f(x′) if xn = x′

n for all n /∈ B.

In other words, a nonresponsive analyte does not influence the sensor output regardless of its quantity.
An analyte is considered “responsive” if a single copy yields a different measurement than the null signal
(e.g., an empty microfluidic partition).

We define a final intuitive condition on our system called fingerprint equivalence. The fingerprint of
analyte n is the measurement yielded by an isolated copy of the analyte, or f(en). Among analytes with
identical fingerprint responses within a sensor group, the total number of occurrences of these analytes
dictates the output response. In other words, the sensors treat these analytes as interchangeable copies of
each other.

Definition S2.3 (Fingerprint Equivalence). Let X ⊆ {1, ..., N} be an index set of analytes with identical
fingerprints, i.e. f(ei) is fixed for all i ∈ X . A system has the fingerprint equivalence property if for any
pair of vectors x and x′ with supp(x), supp(x′) ⊆ X and

∑
n xn =

∑
n x

′
n, we have f(x) = f(x′).
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Note that even if all analyte fingerprints are distinct, multiple signals can still map to the same measure-
ment vector since we allow for cases of multi-analyte capture in the same partition. We define these signals
as members of a collision set.

Definition S2.4 (Collision Sets). The collision set Cx for signal x is the set of all signals x′ that satisfy
f(x′) = f(x).

We define U as the set of unique collision sets. In 2-channel ddPCR with binarized measurements, there are
four collision sets in each sensor group ({0, 1}2). It will soon be clear that observations y are drawn from a
mixture model. We can define each mixture element as follows:

Definition S2.5 (Mixture Element). The mixture element Ex for signal x is the set of all signals x′ that
satisfy p(y|x) ∼ p(y|x′).

Note with any zero-mean noise, p(y|x) ∼ p(y|x′) ⇒ f(x) = f(x′) such that Ex ⊆ Cx. In some cases, such as
additive white Gaussian noise, Ex = Cx. We define V as the set of unique mixture elements with arbitrary
Ev ∈ V.

S2.3 Proof of Identifiability

With G different sensor groups indexed by g, we assume that the sensor group applied to a measurement
y is known and deterministic. Each sensor group has a different function f that maps x to M -dimensional
space (e.g., different probes in ddPCR). Identifiability means that p(y|λ) = p(y|λ′) ∀y, g ⇒ λ = λ′. Each
λ must yield a unique set of G distributions of measurements.

We will use the notation Cg
u and Eg

v to specify the group g when necessary. For an arbitrary group, we
can express p(y|λ) as:

p(y|λ) =
∑
x

p(y|x)P (x|λ)

=
∑
Ev∈V

p(y|x ∈ Ev)P (Ev|λ),
(S3)

P (Ev|λ) =
∑
x∈Ev

P (x|λ). (S4)

If a mixture distribution is identifiable, it means that identical distributions must come from the same
set of weights on the mixture elements; in this context, p(y|λ) ∼ p(y|λ′) ⇒ P (Ev|λ) = P (Ev|λ′) ∀v. Many
finite mixtures (what we practically have in MMVP) and countably infinite mixtures with common noise
distributions are identifiable [2-3], and we assume that the system noise characteristics lend to an identifiable
mixture. However, we need to prove the identifiability of MMVP, or that equal mixture weights implies equal
Poisson parameters: P (Eg

v |λ) = P (Eg
v |λ

′) ∀v, g ⇒ λ = λ′. Note that because Eg
x ⊆ Cg

x and unique collision
sets are disjoint, P (Eg

v |λ) = P (Eg
v |λ

′) ∀v, g ⇒ P (Cg
u|λ) = P (Cg

u|λ
′) ∀u, g.

We assume P (Cg
u|λ) = P (Cg

u|λ
′) ∀u, g and prove the implication of λ = λ′ given a set of monotonic

sensors and with analytes exhibiting responsiveness and fingerprint equivalence in all G groups. We first
focus on what can be concluded from a single, arbitrary sensor group (dropping the g superscript) with
analytes potentially having nonunique fingerprints, and then we conclude with how multiple groups can be
pooled to achieve identifiability. Again, note that our analysis will focus on monotonic increasing sensors
without loss of generality.

Define A ⊆ {1, ..., N} such that analytes indexed by a ∈ A are all responsive such that there exists some
m such that fm(ea) > fm(0). Define the complementary set B with nonresponding analytes indexed by b.

Lemma S2.1. If fm is monotonic increasing for all m ∈ {1, ...,M}, and if only the analytes indexed by
a ∈ A ⊆ {1, ..., N} are responsive, then f(x) = f(0) if and only if xA = 0.

Proof. Consider z such that zA = 0. Note that supp(z) ⊆ B. Because analytes indexed by b ∈ B are
nonresponding, f(z) = f(0) by definition. Next, we prove the forward condition, f(x) = f(0) ⇒ xA = 0, by
contradiction. Say f(z) = f(0) and let z satisfy za ≥ 1 for some a ∈ A. By definition of A, f(ea) > f(0),
and z ⪰ ea. With monotonic functions, f(z) ⪰ f(ea) ≻ f(0) and we have arrived at a contradiction.
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The key concept to carry forward is that values of elements in xB are entirely arbitrary for the analysis
of collision sets.

Lemma S2.2. Let fm be monotonic increasing for all m ∈ {1, ...,M}, and let only the analytes indexed by
a ∈ A ⊆ {1, ..., N} be responsive. If P (C0|λ) = P (C0|λ′), then

∑
λA =

∑
λ′
A.

Proof. By Lemma S2.1, C0 contains all x with xA = 0 with arbitrary values on xB. Therefore, P (C0|λ) =
P (C0|λ′) implies

P (xA = 0|λ) = P (xA = 0|λ′) (S5)

e−
∑

λA = e−
∑

λ′
A (S6)∑

λA =
∑

λ′
A. (S7)

Lemma S2.3. Let fm be monotonic increasing for all m ∈ {1, ...,M}, and let only the analytes indexed by
a ∈ A ⊆ {1, ..., N} be responsive. For a ∈ A, if for all x ∈ Cea

, xa is the only nonzero value in xA, then
λa = λ′

a.

Proof. We assume P (Cea
|λ) = P (Cea

|λ′). By definition of A, f(ea) ≻ f(0). If xa is the only nonzero value
of xA, we have Cea = {cea : c ∈ K ⊆ {1, 2, . . .}}. Then, P (Cea |λ) = P (Cea |λ

′) implies

e−
∑

λA
∑
c∈K

λc
a

c!
= e−

∑
λ′

A
∑
c∈K

λ′
a
c

c!
. (S8)

Using Lemma S2.2,
∑

c∈K
λc
a

c! =
∑

c∈K
λ′
a
c

c! , which implies λa = λ′
a since the function on both sides is

monotonic in λa.

From here, we first derive results for the special case where all analytes indexed by A have unique single-
copy fingerprints. Afterwards, we generalize to multiple groups, allowing for equal nonzero fingerprints
within a group. The next Lemma guarantees at least one index a to which Lemma S2.3 can be applied.

Lemma S2.4. Let fm be monotonic increasing for all m ∈ {1, ...,M}, and let only the analytes indexed by
a ∈ A ⊆ {1, ..., N} be responsive. If f(ei) ̸= f(ej) ∀i, j ∈ A with i ̸= j, ∃a ∈ A such that all x ∈ Cea are
nonzero in xA only on index a.

Proof. First, with unique nonzero fingerprints in A and monotonic sensors, the fingerprint responses fm(ea)
can be sorted. Starting arbitrarily with m = 1, we can select the minimal set M ⊆ A that minimizes f1(ea)
such that ∀a ∈ M,∀j ∈ Mc, f1(ea) < f1(ej). If |M| > 1, then the process can be repeated with m = 2
(and so forth) on the subset M until there is one unique minimum and its corresponding index a.

For this ea, all i ∈ A \ {a} satisfy fm(ei) > fm(ea) for at least one m. Therefore, signals in the collision
set x ∈ Cea

must satisfy xi = 0 for all i ∈ A \ {a}. Signals with at least one xi ≥ 1 would have at least one
m where fm(x) > fm(ea), and therefore not be in the collision set by definition. This conclusion completes
the proof by contradiction.

Next, we show how this result chains to all analytes indexed in A.

Lemma S2.5. Let fm be monotonic increasing for all m ∈ {1, ...,M}, and let only the analytes indexed by
a ∈ A ⊆ {1, ..., N} be responsive. If f(ei) ̸= f(ej) ∀i, j ∈ A with i ̸= j, λa = λ′

a ∀a ∈ A.

Proof. Lemmas S2.3 and S2.4 guarantee at least one a that yields λa = λ′
a. Let us call this index a1 and define

the subset S ⊆ A, the subset of indices for which λi = λ′
i ∀i ∈ S. At this point, S = {a1}. Repeating the

process in the proof of Lemma S2.4, we can find a new index a2 that satisfies fm(en) > fm(ea2) ∀n ∈ Sc\{a2}
for at least one m.

For the direct proof of identifiability, we assume P (Cea2
|λ) = P (Cea2

|λ′), or:
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∑
x∈Cea2

P (x|λ) =
∑

x∈Cea2

P (x|λ′). (S9)

Among signals x in Cea2
, xn = 0 for n ∈ Sc \ {a2} because fm(en) > f(ea2

) for some m, and sensors are
monotonic. These signals can also be partitioned into those with xa2 = 0, and those with xa2 ≥ 1. If any of
the former type exist, then xi > 0 for some of the indices i ∈ S. For instance, we could have f(2ei) = f(ea2)

with xi = 2. These signals’ terms in the summation follow the form

[∏
n∈S P (xn|λn)

]
e−

∑
i∈Sc λi . Note

that λi = λ′
i ∀i ∈ S combined with Lemma S2.2 yields

∑
i∈Sc λi =

∑
i∈Sc λ′

i. Because λi = λ′
i for i ∈ S, the

product component is equal on both sides as well. Therefore, these terms can be eliminated in Equation (S9).
We will denote the set of remaining x in the summation as C′.

In C′, we have xa2 ∈ K ⊆ {1, 2, ...}. Therefore:

e
∑

λA
∑

x∈Cea2

∏
n∈S∪{a2}

λxn
n

xn!
= e

∑
λ′

A
∑

x∈Cea2

∏
n∈S∪{a2}

λ′
n
xn

xn!
(S10)

∑
k∈K

λk
a2

k!
hk(λS) =

∑
k∈K

λ′
a2

k

k!
hk(λ

′
S), (S11)

where hk is the mapping λS 7→
∑

x∈Cea2
: xa2=k

∏
n∈S

λxn
n

xn!
. Because λS = λ′

S , we can replace both hk(λS)

and hk(λ
′
S) by constants Hk. Therefore,

∑
k∈K

λk
a2

k!
Hk =

∑
k∈K

λ′
a2

k

k!
Hk. (S12)

Because Hk ≥ 0, both sides are monotonic in λa2
such that λa2

= λ′
a2
. Now, a2 can be added to S and the

process can be repeated until S = A such that λA = λ′
A.

Now, we will extend this result to the case of having equal fingerprints in the same sensor group—i.e.,
that f(ei) = f(ej) for some pairs i, j.

Lemma S2.6. Let fm be monotonic increasing for all m ∈ {1, ...,M}, and let only the analytes indexed by
a ∈ A ⊆ {1, ..., N} be responsive. Define the disjoint sets A1,A2, ...AC indexed by c with ∪C

c=1Ac = A such
that for all i, j ∈ Ac, f(ei) = f(ej). Then,

∑
λAc

=
∑

λ′
Ac

∀c.

Proof. Note that the Poisson distribution has the property that if xi are each independently drawn from
Poisson(λi), then

∑
i∈Ac

xi ∼ Poisson(
∑

λAc
). We can then simply define a dummy variables x†

c =
∑

i∈Ac
xi

and λ†
c such that x†

c ∼ Poisson(λ†
c). This dummy variable represents an “analyte” that appears with a

distribution governed by the total quantities of analytes with the same fingerprint. However, what matters
for identifiability is the sensor functional values of signals, i.e. that f(a) = f(b) if for all c,

∑
aAc =

∑
bAc .

Namely, x†
c ∼ Poisson(λ†

c) by fundamental properties of the Poisson distribution, but it is only with the
condition of fingerprint equivalence (Definition S2.3) that lets us apply all previous results that are based on

collision sets, i.e., sets of signals with equal functional values. These yield λ†
c = λ′

c
† ∀c, or

∑
λAc

=
∑

λ′
Ac

∀c.

Theorem S2.7. Let g index G different sensor groups that satisfy fingerprint equivalence and that contain
monotonic, saturating sensors. For each group g, define the row vector zgc of zeros and ones with ones in the
indices associated with Ac. Define the N -column matrix Zg whose C rows are comprised of zgc ∀c. Define
the N -column matrix Z as the vertical concatenation Zg ∀g. If rank(Z) = N , then λ = λ′.

Proof. This theorem is a formal way of saying that Lemma S2.6 must yield N independent equations when
applied to all groups where the sensing and system conditions hold. We can consider the system of equations
yielded by Lemma S2.6 and represented by Zλ = Zλ′, or Z(λ−λ′) = 0. If rank(Z) = N , then it follows that
λ = λ′. Therefore, we have P (Cg

u|λ) = P (Cg
u|λ

′) ∀(u, g) ⇒ λ = λ′, concluding our proof of identifiability.
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S3 Special Cases of MLE with ddPCR

From eq 2 in the main text that describes the generalized gradient in MLE, we consider two commonly
employed special cases. First, if samples are sufficiently dilute such that partitions are either empty (xd = 0)
or have only one analyte, the goal is often to identify each nonzero signal independently with a classification
process. In other words, assays must be designed such that p(yd|x) > 0 only for x∗

d - the measurements are

unambiguous. Setting the gradient equal to zero and simplifying leads to λ̂MLE = 1
D

∑D
d=1 x

∗
d. In practice,

clusters of classes must have reliable decision boundaries and concentrations are estimated by totaling the
classification results.

The second specialized case is common for ddPCR where for each PCR assay is specific for a target
analyte and assigned to a particular channel. With M channels, N = M and each measurement unam-
biguously determines the presence or absence of each target sequence. Precisely, p(yd|x) is one or zero, and
considerations of each analytes’ quantity xn can be simplified to xn = 0 (absent) or xn > 0 (present). Each

analyte n can be inferred independently such that λn = − log
D0,n

D where D0,n is the number of droplets
that do not contain analyte n. This formula can be found by applying the above assumptions, setting eq 2
in the main text to zero, and simplifying.

S4 Exact Gradient Computation and p(y|x) Model for ddPCR

We first focus on the gradient resulting from a single probe group. In a single group, there are only four viable
measurements with y ∈ {0, 1}2. Let us define Y = {0, 1}2, and py as the proportion of the D measurements
that equal y. We can then re-express the log-likelihood maximization as:

λ̂MLE = argmax
λ

1

D

D∑
d=1

log
∑
x∈ZN

+

p(yd|x)P (x|λ) (S13)

= argmax
λ

∑
y∈Y

py log
∑
x∈ZN

+

p(yd|x)P (x|λ) (S14)

Here, we will use λ ≡ λ(bact) since we will be optimizing over the bacterial concentrations directly. In
our case, E. cloacae is the only bacteria with a fractional abundance of a probe binding site - approximately
87.5% of its copies interact with probes 1, 3, and 4, and 12.5% interact with only probes 3 and 4 (Figure
S3). Similarly to how we defined C in the Results and Discussion, we can define C(g) for group g with each
bacterium’s fractional abundances of genes with a corresponding barcode. Figure S3 shows an example of
C(1), which can be generated with Figure 1 as a reference.

We define p(y|x) =
∏

m p(ym|x). For p(ym = 1|x), then p(ym|x) = 1 if the droplet has at least one copy
of a gene that interacts with probe m and p(ym|x) = 0 otherwise. For p(ym = 0|x), this likelihood is 1 if
none of the genes in the droplet interact with probe m and 0 otherwise.

However, with the analyte currently defined as a copy of the nth bacterium’s 16S gene, we must be
careful. For instance, with index 3 corresponding with E. cloacae, if x3 = 1 in x, p(y1|x) may not be 1
since one copy of E. cloacae’s 16S gene is not guaranteed to interact with probe 1. To resolve this, we
will temporarily transform the problem to the space of gene barcodes for this group: λ(BC1) = C(1)λ.
Note λ(BC1) is 4-dimensional. We can define x(BC1) = [x00, x01, x10, x11]

T as the vector representing the
quantities of 16S genes from any source bacteria that interact with the probes in the pattern noted in the
subscript, noting x(BC1) ∼ Poisson(λ(BC1)). Lastly, let us define Xy as that set where if x(BC1) ∈ Xy, then
p(y|x(BC1)) = 1. Now we can rewrite Equation (S14) as:

=
∑
y∈Y

py log
∑

x(BC1)∈Xy

P (x(BC1)|λ(BC1)). (S15)

The linearity of gradients allow us to treat this one y at a time, summing the contributions from each y
at the end. In general, treat 00 as short for [0, 0], 01 for [0, 1], etc. Let ∇00

λ be the component of the gradient
from y = [0, 0], ∇01

λ from y = [0, 1], etc. We will similarly define the mean log likelihood contributions as
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ℓ00, ℓ01, etc. Similarly, define the rows of C(1) as C
(1)
00 ,C

(1)
01 , etc. By convention, λ and other vectors should

be assumed to be column vectors, but the rows of C(1) are row vectors. Thus we have:

ℓ00 = p00 logP (x01 = 0 and x10 = 0 and x11 = 0) (S16)

= p00e
−x01−x10−x11 (S17)

= p00(−C
(1)
01 −C

(1)
10 −C

(1)
11 )λ (S18)

∇00
λ = p00(−C

(1)
01 −C

(1)
10 −C

(1)
11 )

T . (S19)

In the first line, we define the conditions for x(BC1) ∈ X00 and solve. Genes that interact with either
probe cannot be in droplets that yield y = [0, 0]. Next, for the y = [0, 1] response, at least one gene that
interacts with the 2nd (FAM) probe must be present, and genes that interact with the HEX probe must be
absent.

ℓ01 = p01 logP (x01 ≥ 1 and x10 = 0 and x11 = 0) (S20)

= p01 log(1− e−x01)e−x10−x11 (S21)

= p01

(
log(1− e−C

(1)
01 λ)−C

(1)
10 λ−C

(1)
11 λ

)
(S22)

∇01
λ = p01

[(
e−C

(1)
01 λ

1− e−C
(1)
01 λ

)
C

(1)T
01 −C

(1)T
10 −C

(1)T
11

]
. (S23)

A virtually identical simplification for ∇10
λ is omitted here. Lastly, for y = [1, 1], we have:

ℓ11 = p11 log(P (x11 ≥ 1) + P (x11 = 0 and x01 > 0 and x10 > 0) (S24)

= p11 log

(
(1− e−x11) + e−x11(1− e−x01)(1− e−x10)

)
. (S25)

The remaining algebraic steps are omitted, but the final result is

∇11
λ = p11e

−x11
−C

(1)T
11 − e−x01(−C

(1)T
01 −C

(1)T
11 )− e−x10(−C

(1)T
10 −C

(1)T
11 )− e−x01−x10(−C

(1)T
01 −C

(1)T
10 −C

(1)T
11 )

(1− e−x11) + e−x11(1− e−x01)(1− e−x10)
(S26)

where C
(1)
ij λ can be substituted for any xij .

We can now say that for group 1, ∇(1)
λ = ∇00

λ +∇01
λ +∇10

λ +∇11
λ . The above process can be repeated

for any group g. Therefore, the final gradient vector (arbitrarily scaled) is

∇λ =
∑
g

pg∇(g)
λ (S27)

where pg is the proportion of total droplets that come from group g.
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Figure S1: Separation of bacterial barcodes with amplitude multiplexing. Each cluster depicted is from a separate
ddPCR reaction with one bacterial species in it. Data from the three Staphylococcus bacteria and the two Streptococcus
bacteria were combined in this plot. Amplitude multiplexing is a technique to resolve more probes than the available
number of color channels, but it is typically used with each unique probe participating in an orthogonal assay with
its own primer pair. Here, we adjusted probe concentrations to “move” the cluster positions with a single pair of
primers. Probes 1 and 5 were tagged with HEX, and Probes 2-4 were tagged with FAM. Probes 1, 2, and 4 at
125 nM, and with Probes 3 and 5 at 250 nM. Based on each 16S gene’s barcode, droplets containing that gene will
position in clusters whose channel intensities roughly correlate with the total probe concentration tagged with the
corresponding fluorophore.

Figure S2: Plate layout for ddPCR test samples. The first two rows served as references for ground truth concen-
tration estimation of monomicrobial dilutions and manual thresholding of all wells. The colors of the wells in rows
A and B correspond to the probe group applied. Random mixtures of bacteria were distribtued across the rest of
the plate with each mixture being applied to four wells, each with a different subset of two probes defining the 16S
barcodes.
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Figure S3: Example of partial barcode matrix for Group 1. E. cloacae’s amplicons appeared to always interact
with Probes 3 and 4, but a small subcluster appeared to lack the HEX response to Probe 1 (Fig. S1a). We used our
SPoRe algorithm to estimate the barcode abundances in reference wells A3 and B10 (Fig. S2) which both contained
Probe 1. After manual thresholding, the binarized data and “analytes” with barcodes [0, 1], [1, 0], and [1, 1] (ordered
as [HEX, FAM]) were passed to SPoRe, and SPoRe estimated the abundances of the amplicons with these responses.
In this case, the [1, 0] quantity was nearly zero, consistent with the expectation that E. cloacae always interacted
with a FAM probe. The fraction of amplicons with the HEX probe was determined by λ[1,1]/(λ[1,1] + λ[0,1]). In A3
and B10, these were estimated to be 0.832 and 0.828, respectively. Our sequence analysis found eight 16S copies in
the E. cloacae genome, so it is possible that one amplicon had a sequencing error such that Probe 1 truly binds to
7/8 copies. Therefore, column 3 of matrix C had 0.875 of barcode [1,1] and 0.125 of barcode [0,1] for Groups 1 and
3.

(a) (b) (c)

Figure S4: Example process for manual thresholding with noted challenges. (a) All reference data (rows A and
B in Figure S2) from the same probe group was pooled and displayed to serve as a visual reference. Droplet “rain”
is evident in each cluster. Due to some mild “lean” and ”lift” of the raw ddPCR clusters caused likely by partial
probe interactions, we allowed any linear threshold for each fluorescence channel determined by two user-selected
points. (b) Raw data from a polymicrobial sample was overlaid on the reference data with the same corresponding
probe group. An example is shown with the raw data from D09 (Group 1, k = 4 sample number 2) overlaid with
the Group 1 reference data. PSC effects, as expected, create subpopulations of droplet measurements between the
binary clusters. We speculate that the small additional cluster near zero is due to droplets where probes partially
interacted with amplicons due to imperfect sequence homology. (c) After the user selects two points to define a line
for thresholding, the plot is updated to allow the user to visually confirm the results. Red points are assigned the
value 1, and black points are assigned 0.
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Figure S5: Likelihood comparison of SPoRe’s solution against the estimated ground truth. SPoRe’s solution exhibits
higher average likelihood for the pre-binarized data that it is given.

Figure S6: SPoRe’s performance on simulations of experimental concentrations. Given the estimated ground truth
concentrations (λ∗), we simulated binary measurement data to pass to SPoRe. SPoRe returns virtually perfect results
with mean cosine similarity of 0.9999. Here, we plot the relative error in estimates of the absolute abundance for
each bacteria, represented by |λ̂n − λ∗

n|/λ∗
n when running SPoRe on the simulated measurements.
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