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Abstract
Machine learning systems are often applied to
data that is drawn from a different distribu-
tion than the training distribution. Recent work
has shown that for a variety of classification
and signal reconstruction problems, the out-of-
distribution performance is strongly linearly cor-
related with the in-distribution performance. If
this relationship or more generally a monotonic
one holds, it has important consequences. For
example, it allows to optimize performance on
one distribution as a proxy for performance on
the other. In this work, we study conditions un-
der which a monotonic relationship between the
performances of a model on two distributions is
expected. We prove an exact asymptotic linear re-
lation for squared error and a monotonic relation
for misclassification error under a subspace shift
model with feature scaling.

1. Introduction
Machine learning models are typically evaluated by shuf-
fling a set of labeled data, splitting it into training and test
sets, and evaluating the model trained on the training set on
the test set. This measures how well the model performs
on the distribution the model was trained on. However, in
practice a model is most commonly not applied to such
in-distribution data, but rather to out-of-distribution data
that is almost always at least slightly different. In order
to understand the performance of machine learning meth-
ods in practice, it is therefore important to understand how
in-distribution and out-of-distribution performance relate.

While there are settings in which models with similar in-
distribution performance have different out-of-distribution
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performance (McCoy et al., 2019), several recent empirical
studies have shown that often, the in-distribution and out-of-
distribution performances of models are strongly correlated.

Recht et al. (2018; 2019), Yadav & Bottou (2019), Miller
et al. (2020) constructed new test sets for the popular CIFAR-
10, ImageNet, and MNIST image classification problems
and for the SQuAD question answering datasets by fol-
lowing the original data collection and labeling process as
closely as possible. For all four cases, the performance
drops significantly when evaluated on the new test set, indi-
cating that even when following the original data collection
and labeling process, a distribution shift occurs. In addition,
for all four distribution shifts, the in- and out-of-distribution
errors are strongly linearly correlated.

Miller et al. (2021) identified a strong linear correlation of
the performance of image classifiers for a variety of natu-
ral distribution shifts. Apart from classification, the linear
performance relationship phenomenon is also observed in
machine learning tasks where models produce real-valued
output, for example in pose estimation (Miller et al., 2021)
and object detection (Caine et al., 2021).

Darestani et al. (2021) identified a strong linear correlation
of the performance of image reconstruction methods for a
variety of natural distribution shifts. This relation between
in- and out-of-distribution performances persists for image
reconstruction methods that are only tuned and not trained.

An important consequence of a linear, or more gener-
ally, a monotonic relationship between in- and out-of-
distribution performances is that a model that performs bet-
ter in-distribution also performs better on out-of-distribution
data, and thus measuring in-distribution performance can
serve as a proxy for tuning and comparing different models
for application on out-of-distribution data.

It is therefore important to understand when a linear or more
generally a monotonic relationship between the performance
on two distributions occurs. In this paper we study this
question theoretically for a class of distribution shifts where
the features come from different distributions.

We consider a general setup encompassing classification
and regression for a large class of estimators obtained with
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regularized empirical risk minimization, and show that as
various training parameters change, including for example
the regularization strength or the number of training ex-
amples (resulting in different estimators), the relationship
between in- and out-of-distribution performances of the es-
timators is monotonic. Different classes of estimators using
different feature spaces follow different monotonic relations,
and we also observe this in practice (see Figure 2). Inter-
estingly, for a certain class of shifts in classification, we
recover a linear relation for a nonlinear function of the risks
that is remarkably similar to that demonstrated by Miller
et al. (2021).

Our results suggest that linear risk relationships observed in
regression and classification actually arise by independent
mechanisms, being based on a shift in feature subspace for
regression and a shift in feature scaling for classification.

Prior work. Classical theory for characterizing out-of-
distribution performance ensures that the difference between
in- and out-of-distribution performances is bounded by a
function of the distance of the training and test distribu-
tions (Quiñonero-Candela et al., 2008; Ben-David et al.,
2010; Cortes & Mohri, 2014). Such bounds often apply to a
class of target distributions. In contrast, we are interested in
precise relationships between two fixed distributions.

Regarding characterizing linear relationships, Miller et al.
(2021, Sec. 7) proved that for a distribution shift for a binary
mixture model, the in- and out-of-distribution accuracies
have a linear relation if the features vectors are sufficiently
high-dimensional. Mania & Sra (2020) showed that an ap-
proximate linear relationship occurs under a model similar-
ity assumption that high accuracy models correctly classify
most of the data points correctly classified by lower accu-
racy models, providing a different approach to explaining
the linear relation phenomenon without characterizing the
distribution shift.

Most related to our work is that of Tripuraneni et al. (2021),
who revealed an exact linear relation for squared error of a
linear random feature regression model under a covariate
shift in the high-dimensional limit. This covariate shift is
philosophically similar to the subspace shift we propose,
and yields a similar linear relation for squared error. How-
ever, our results apply to a broader class of general linear
models and extend to misclassification error, and we also
add a more general task-dependent feature scaling, which
captures how classification problems can become easier or
harder. Moreover, our results predict general monotonic
relationships as opposed to only linear ones.

2. Main Results
We prove a general monotonic risk relationship for all mod-
els trained using ridge-regularized empirical risk minimiza-
tion (ERM) under a subspace shift model in the proportional
asymptotics regime, in which the limit of the number of
features over the number of training examples converges to
a constant, i.e., limd→∞ d/n ∈ (0,∞).

We consider data where the function for generating labels
from features, which we refer to as the task, depends only
on a fixed linear combination of features. The setup encom-
passes both classification and regression. The distribution
shift model consists of a subspace shift plus a feature scal-
ing which may correlate with the task. We show that when
the shift is task-independent, there is a linear relation be-
tween the in- and out-of-distribution squared error. We also
show that for more general task-dependent shifts, there is a
monotonic risk relation for the misclassification error.

Distribution shift model. We consider data drawn from
a linear model, where the dependent variable is a function
of the inner product of a task vector β∗ ∈ Rd and a feature
vector x ∈ Rd. We assume that the task vector β∗ ∈ Rd

is obtained by drawing each of its elements independently
from a zero-mean random variable B∗ with variance σ2

β ,
and is then fixed.

We consider two different distributions of the features:

P : x ∼ N (0,ΣP ), Q : x = x̃ ◦ s, x̃ ∼ N (0,ΣQ),

where ΣP and ΣQ are covariance matrices defined below,
and ◦ denotes entry-wise multiplication. The vector s ∈ Rd

is a feature scaling of the form [s]j =
√
ρs(|[β∗]j |) for a

feature scaling function s : [0,∞) → [0,∞), and ρ > 0 is
a scaling factor.

Our distribution shift model has two components. The first
component is a subspace shift model on the covariance
matrices ΣP ,ΣQ. We partition the feature space Rd into
three subspaces: one unique to distribution P , one unique
to distribution Q, and one shared by both, which we label as
subspace R. Define diagonal pairwise orthogonal subspace
projection matrices ΠP ,ΠQ,ΠR ∈ Rd×d such that ΠP +
ΠQ +ΠR = Id, and define the covariance matrices as

ΣP =
1

d
(ΠP +ΠR) and ΣQ =

1

d
(ΠQ +ΠR).

The second component of the distribution shift is a task-
dependent feature scaling imposed by entry-wise multipli-
cation with the scaling vector s. The scaling changes the
task difficulty by changing the value placed on features that
are easier or harder to learn from the training distribution.

We assume the scaling function s to be normalized such that
E
[
s(B∗)2B∗2] = E

[
B∗2], since we already control the
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overall scale with the scaling parameter ρ. As we show, this
means that the effect of the choice of scaling function s is
determined entirely by its second moment, which we call
ς2 ≜ E

[
s(B∗)2

]
. Changes in the scaling function s result

in an increase or decrease of the error of our estimate β̂ by a
factor of ς in a way that is independent of the subspace shift.
If ς > 1, then s is a decreasing function of its input and
places more emphasis on features that were not utilized as
much in training, making the problem more difficult. On the
other hand, when ς < 1, the features are scaled increasingly
in their magnitude, and the labels rely primarily on features
that would have been learned well during training, making
it easier. If ς = 1, corresponding to s(b) = 1, then the
distribution shift is task-independent. A simple choice of

s is s(b) = |b|pσβ/
√

E
[
|B∗|2(p+1)

]
, where p ≥ 0 results

in ς ≤ 1 and p < 0 gives ς > 1. For Gaussian B∗, this
choice of s gives the simple form ς = 1/

√
2p+ 1, which

can range from 0 to ∞ for p ∈ (−1/2,∞).

We are interested in characterizing the relationship between
the risks of an estimate β̂ of β∗ defined with respect to an
error metric ψ : R2 → R on distributions P and Q:

RP (β̂) ≜ E
x∼P

[
ψ(x⊤β∗,x⊤β̂)

]
,

RQ(β̂) ≜ E
x∼Q

[
ψ(x⊤β∗,x⊤β̂)

]
.

We consider the squared error ψ(z∗, ẑ) = (z∗ − ẑ)2 and
the misclassification error ψ(z∗, ẑ) = 1 {z∗ẑ < 0} as error
metrics for regression and classification, respectively.

Ridge-regularized empirical risk minimization (ERM).
We are given a training dataset D = (xi, yi)

n
i=1 for the task

β∗ generated by drawing the pairs (xi, yi) i.i.d. as

xi ∼ P, yi = φ(x⊤
i β

∗, ξi), ξi ∼ N (0, 1).

Here φ : R2 → R is a labeling function. We assume the
labeling function to be either Lipschitz continuous, such as
φ(z, ξ) = z+σξ, which results in a linear regression model
with Gaussian noise N (0, σ2), or a bounded function con-
tinuous almost everywhere, such as the binary labeling func-
tions ϕ(z, ξ) ∼ Bernoulli(f(z)) for some f : R → [0, 1].
The latter includes common classification labeling schemes
such as the logistic model and constant label corruption
probability.

We construct our estimate by solving the ridge-regularized
ERM formulation for some λ ≥ λ∗ > 0:

β̂(D, ℓ, λ) = argmin
β

n∑
i=1

ℓ(yi,x
⊤
i β) +

λ

2
∥β∥22. (1)

Here we assume the loss function ℓ : R2 → R is a twice-
differentiable proper, closed, convex function satisfying
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Figure 1: The risk relationships for data generated according
to our distribution shift model match our theoretical results
(dashed). Each colored curve corresponds to a sweep of the
regularization strength of a single model on a single random
trial. For both plots, we use n = 1000, d = 800, κP = 0.2,
κQ = 0.1, κR = 0.7, σ2

β = 1, and ρ = 2. Left: Mean
squared error for ridge regression models (blue) trained on
yi = x⊤

i β
∗ + σξi for σ2 = 0.2 and ς2 = 1. Although the

tuning parameter overshoots the minimizer in the parameter
sweep, it still always lies on the line. Right: Misclassifica-
tion error for ridge regression (blue) and logistic regression
(orange) models with ridge penalty trained on corrupted bi-
nary labels generated as Pr(yi = sign(x⊤

i β
∗)) = 0.8 with

ς2 = 5. We also plot ridge regression trained on noiseless
labels yi = x⊤

i β
∗ (green) to illustrate that the result is in-

dependent of the labeling function, depending only on the
feature distribution shift.

|z′| ≤ C(1 + |z|) for any z ∈ dom(ℓ(y, ·)) and z′ ∈
∂ℓ(y, z) for some universal C ≥ 0. This is satisfied by
most common losses used for ERM, such as the squared
loss, the logistic loss, and the robust Huber loss. We also are
limited to regularization strengths larger than some λ∗ > 0,
which is a technical detail; as described by Gerbelot et al.
(2020), it is possible to extend to all λ > 0 for a restricted
class of losses and evaluation metrics.

We are now ready to state our result, which holds in the
asymptotic regime, where the dimensions dP , dQ, and dR
of the three subspaces (dP + dQ + dR = d) converge
as dP /d → κP , dQ/d → κQ, and dR/d → κR when
d→ ∞. Our result leverages recent results from the approx-
imate message passing (AMP) literature (Gerbelot et al.,
2020), but could also be proven using the convex Gaus-
sian min-max theorem (Thrampoulidis et al., 2018); see
Appendix B.2.

Theorem 2.1. In the limit as d→ ∞ with limd→∞ d/n ∈
(0,∞), for any β̂ = β̂(D, ℓ, λ) solving (1), we have the
following monotonic relationships between RQ(β̂) and
RP (β̂) almost surely:

(a) Regression. For ψ(z∗, ẑ) = (z∗ − ẑ)2 and ς = 1,

RQ(β̂) = θ2RP (β̂) + ρκQσ
2
β ,
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Figure 2: We train deep network models on classifying even
vs. odd handwritten digits from the MNIST and ARDIS
datasets, evaluating test performance during training as vali-
dation accuracy milestones are reached (dots with errorbars
over 3 trials). We also plot our theoretical risk relation with
κQ/κR and ς chosen to minimize squared error of the fit for
each model.

where θ =
√
ρκR/(κR + κP ).

(b) Classification. For ψ(z∗, ẑ) = 1 {z∗ẑ < 0},

sec(πRQ(β̂))
2 = (1 +

κQ

κR
)(1 + ς2 tan(πRP (β̂))

2).

Furthermore, when ς ≥ 1,

RQ(β̂) > RP (β̂),

and for any ς , in the limit as κQ/κR → 0+,

log(tan(πRQ(β̂))) = log(tan(πRP (β̂))) + log ς.

Our result states that we have a monotonic relation between
in- and out-of-distribution risks under our distribution shift
model, for all estimates β̂ that solve a problem of the form
(1), including, e.g., as we vary the training set size, the reg-
ularization parameter, or even the labeling or loss function.

Figure 1 illustrates this behavior in finite dimensions; there
we plot the prediction of our theory along with instances of
our estimates. That is, two models with the same risk on the
distribution that generated the training data have the same
risk on the new distribution, regardless of whether they were
trained using regression or classification labels, of which
particular loss function was used in training, of the training
sample size, or of the level of label noise.

Our result also matches the observation by Miller et al.
(2021) that the risk relationship for misclassification error
as κQ/κR → 0 is linear with some constant offset after
applying a nonlinear transformation. Their choice to use an
inverse Gaussian cumulative distribution function transfor-
mation Φ−1(·) is remarkably similar to what we obtain—in
fact, supu∈R | 12Φ(u/

√
2) − 1

π tan−1(eu)| ≤ 0.01. This
suggests that such “natural” distributions shifts formed by

repeated dataset collection may have no subspace shift com-
ponent (κQ/κR → 0), but rather only a task-dependent shift
(ς ̸= 1).

For different feature spaces, our theory predicts different
monotonic relations. This is also observed in practice: in
Figure 2, we show that except for the VGG11 and ResNet50
models, our theory is very well predictive of the risk rela-
tion as a function of early stopping for deep network models
trained on MNIST (LeCun et al., 2010), an easy handwrit-
ten digits task, and applied to ARDIS (Kusetogullari et al.,
2020), a much more difficult handwritten digits dataset. The
fits shows that different neural network models, which have
their own respective implicit feature spaces, result in differ-
ent monotonic risk relations.

We remark that the existence of this monotonic relation-
ship doesn’t hold for every choice of metric ψ, even for
those commonly used for learning. Simple counterexamples
are the logistic and hinge losses, as we demonstrate in Ap-
pendix A.2. The way in which monotonicity arises even for
squared error and misclassification error is quite different
between the two cases; see Appendix B.3.

Comments on the proof and possible extensions. The-
orem 2.1 is a consequence of the fact that in the asymp-
totic regime, the estimate converges to the simple form of
β̂ = (ΠP +ΠR)(αβ

∗+e) for some α > 0 and e that is or-
thogonal to β∗, allowing us to very simply characterize the
predictions in terms of a few independent Gaussian random
variables. The implication of this is that the risk R(β̂) for
a general metric ψ for a particular estimate β̂ is a function
only of α and ∥e∥2 for fixed training and test distributions
and task β∗. See Appendix B for proof details.

We have kept our assumptions simple to aid in interpretabil-
ity, but they have several very straightforward extensions.
One is that the data need not be Gaussian, but can come
from the more general class of rotationally invariant data
distributions with arbitrary spectrum, which is more general
than i.i.d. sub-Gaussian data and relevant for random fea-
ture models (Pennington & Worah, 2017; Péché, 2019). The
assumption that the projection matrices are diagonal and
aligned with the standard basis can be relaxed to subspaces
in free position if we require B∗ to be Gaussian. Lastly,
the results extend in the task-independent setting (ς = 1) to
other convex separable regularizers such as the ℓ1 penalty,
as we describe in Appendix B.4; to capture task-dependent
shifts, we state our results only for the ridge penalty.
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Péché, S. A note on the Pennington-Worah distribution.
Electronic Communications in Probability, 24:1–7, 2019.

Pennington, J. and Worah, P. Nonlinear random matrix the-
ory for deep learning. In Advances in Neural Information
Processing Systems, volume 30, 2017.
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A. Additional Details and Figures
A.1. Experimental Details for Digit Classification

In this section, we describe the details of the even vs odd handwritten digit classification experiment in Figure 2.

The models we evaluate are from torchvision.models:

• AlexNet (Krizhevsky et al., 2012)

• VGG (Simonyan & Zisserman, 2015): VGG11, VGG16

• ResNet (He et al., 2016): ResNet18, ResNet50

• DenseNet (Huang et al., 2017): DenseNet121, DenseNet161

We consider a binary classification task of classifying even versus odd digits on the MNIST (LeCun et al., 2010) dataset and
ARDIS (Kusetogullari et al., 2020) dataset IV. The ARDIS dataset is a new image-based handwritten historical digit dataset
extracted from Swedish church records, which induces a natural distribution shift from the widely-used MNIST dataset. The
ARDIS dataset IV has the same image size as the MNIST dataset with white digits in black background.

Since the models we evaluate are originally designed for ImageNet (Deng et al., 2009) classification where the image sizes
are larger, we resize the MNIST and ARDIS digits from 28× 28 to 75× 75. We train the model listed above on MNIST
training set using the Adam optimizer with an initial learning rate 10−4 and a batch size 10 and a learning rate scheduler with
a step size 10 epochs and a learning rate decay factor 0.1. The models at the top right corner of Figure 2(right) are trained
for 20 epochs. Intermediate models are obtained by early stopping when validation accuracy first reaches 0.5, 0.6, 0.7, 0.8
and 0.9. Each model is trained three times with random initialization and with random shuffling of the training data, using
different random seeds. All models are trained on an NVIDIA A40 GPU.

A.2. Not All Risks Have Monotonic Relationships

As discussed in the discussion around Theorem 2.1, the existence of a monotonic relation after distribution shifts is not
a universal phenomenon that holds for broad classes of losses such as convex functions. We can demonstrate this via
counterexample with the hinge and logistic losses that are used to train support vector machines, logistic regression models,
and neural networks. We plot an example of this in Figure 3 for curves described by Lemma B.3 as a function of α only. In
general, if both σE and α are free, monotonicity is even more difficult to achieve.
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Figure 3: We compute, via Monte Carlo simulation with 105 random draws of (Z,W,E), the risk relationships for
misclassification error (left) alongside the logistic loss ψ(z∗, ẑ) = log(1 + exp(−sign(z∗)ẑ)) (middle) and the hinge loss
ψ(z∗, ẑ) = max {1− sign(z∗)ẑ} (right). Here we have chosen ρ = 5, κP = 0.1, κQ = 0.1, κR = 0.8, σβ = 1, ς = 1,
and fixed σE = 1. Unlike the misclassification error, these losses do not exhibit monotonic risk relationships as a function
of α.

B. Proof of Theorem 2.1
In this section, we prove our main asymptotic result in Theorem 2.1. We first introduce a couple of definitions.
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B.1. Definitions of Pseudo-Lipschitz Continuity and Convergence

We borrow the following definitions from Appendix A of Emami et al. (2020).

Definition B.1 (Pseudo-Lipschitz continuity). For a given p ≥ 1, a function f : Rr → Rs is called pseudo-Lipschitz of
order p if there exists a constant C > 0 such that for all x1,x2 ∈ Rr,

∥f(x1)− f(x2)∥ ≤ C∥x1 − x2∥
(
1 + ∥x1∥p−1

+ ∥x2∥p−1)
.

Definition B.2 (Empirical convergence of a sequence). Consider a sequence of collections of vectors Wn = (w
(n)
i )ni=1,

where w
(n)
i ∈ Rr. We say that the sequence Wn converges empirically with p-th order moments if there exists a random

variable W ∈ Rr such that

(a) E
[
∥W∥pp

]
<∞ and

(b) for any f : Rr → R that is pseudo-Lipschitz continuous of order p,

lim
n→∞

1

n

n∑
i=1

f(w
(n)
i ) = E [f(W )] .

With a slight abuse of notation, we will write

wi
2⇒W

to indicate empirical convergence of Wn to the random variable W for p = 2, omitting dependency of the convergence on n.
This notion of convergence is equivalent to weak convergence plus convergence in p-th moment when elements of wi are
i.i.d. and is also equivalent to convergence in Wasserstein-p metric (Bayati & Montanari, 2011; Emami et al., 2020). For this
reason, we also overload this notation, writing X 2⇒ Y for simultaneous weak convergence and convergence in second
moment of a random vector X ∈ Rr to another random vector Y ∈ Rr.

B.2. A Useful Lemma

Theorem 2.1 is a consequence of the following lemma, which shows that asymptotically, ground truth predictions and those
of all solutions that use ridge regularization converge to relatively simple joint Gaussian distributions.

Lemma B.3. For any estimate β̂ solving (1), in the limit as d → ∞, there exist α, σE > 0 such that the test predictions
Z∗
P = x⊤β∗ and ẐP = x⊤β̂ for x ∼ N (0,ΣP ) and Z∗

Q, ẐQ similarly defined for x = x̃ ◦ s, x̃ ∼ N (0,ΣQ) converge
almost surely as

(Z∗
P , ẐP )

2⇒ (Z,αZ + E),

(Z∗
Q, ẐQ)

2⇒ (θZ +W, θ(αZ + ςE)),

where Z ∼ N (0, (κP + κR)σ
2
β), W ∼ N (0, ρκQσ

2
β), E ∼ N (0, (κP + κR)σ

2
E), and θ =

√
ρκR/(κP + κR).

To prove Lemma B.3, we leverage recent powerful results that have been proven recently for regularized ERM estimators
in the proportional asymptotics regime. While we specifically use a result proven using the approximate message passing
framework by Gerbelot et al. (2020) (see also a similar result by Emami et al. (2020)), we emphasize that the same result
could be obtained via other techniques such as the convex Gaussian min-max theorem (Thrampoulidis et al., 2018)—we
refer the reader to Salehi et al. (2019) for an example with logistic regression. All that is required is a result that shows
that β̂ converges to a linear combination of β∗ and isotropic noise. Our strategy is to apply these results, which hold for
rotationally invariant data distributions, to the restriction of the data space to the subspace corresponding to distribution P .
Then using the characterization of the limiting joint distribution of β∗ and β̂, we compute the joint distribution of model
outputs.
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B.2.1. EMPIRICAL CONVERGENCE OF ERM ESTIMATORS

First, we re-state Theorem 1 of Gerbelot et al. (2020) in our notation. Strictly speaking, we state only the result of Lemma 4
of Gerbelot et al. (2020), since the full theorem requires an additional analytic continuation argument found in Appendix
H of the same work. We refer the reader to that reference for details. We also remind the reader of the definition of the
proximal operator for a function f : R → R:

Proxf (x) = argmin
z

f(z) +
1

2
(x− z)2.

We now state the theorem, omitting assumptions that are naturally implied by the addition of the ridge penalty, and limiting
the data assumption to isotropic Gaussian distributions.

Theorem B.4. Consider the optimization problem

β̂ ∈ argmin
β

n∑
i=1

ℓ(yi,x
⊤
i β) + λ′

d∑
j=1

Ω(βj) +
λ∗

2
∥β∥22, (2)

where xi
i.i.d.∼ N (0, 1dI), yi = φ(x⊤

i β
∗, ξi), and ξi

i.i.d.∼ N (0, 1). Assume that

• the functions ℓ and Ω are proper, closed and convex functions;

• for any |z′| ≤ C(1 + |z|) for any z ∈ dom(ℓ(y, ·)) and z′ ∈ ∂ℓ(y, z) for some universal C ≥ 0, and the same holds
for Ω on its domain;

• the labeling function φ is a proper, closed, continuous function;

• the empirical distribution of β∗ converges empirically with second order moments, as defined in Definition B.2, to a
zero-mean scalar random variable B∗ with variance σ2

β;

• the solution the set of fixed point equations (11) of Gerbelot et al. (2020) exists and is unique;

• n, d→ ∞ with fixed ratio d/n.

Then there exist a, c, σ̃E > 0 and λ∗ > 0 such that for any pseudo-Lipschitz function ϕ of order 2, the following holds
almost surely

lim
p→∞

1

p

p∑
j=1

ϕ(β∗
j , β̂j) = E

[
ϕ
(
B∗,Prox

cΩ̃

(
aB∗ + Ẽ

))]
,

where Ω̃(b) = λ′Ω(b) + λ∗

2 b
2 and Ẽ ∼ N (0, σ̃2

E) independent of B∗.

The original result considers continuous labeling functions, but we can extend to bounded continuous functions with
discontinuities of Lebesgue measure zero by upper and lower bounding by some continuous functions that get arbitrarily
close to φ; we omit the details.

Specializing this result to the ridge penalty Ω(b) = 1
2b

2, for α = a/(1 + c(λ′ + λ∗)) and σE = σ̃E/(1 + c(λ′ + λ∗)), we
have

(β∗, β̂)
2⇒ (B∗, αB∗ + E),

where E ∼ N (0, σ2
E) is independent of B∗.
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B.2.2. EXTENDING TO THE SUBSPACE MODEL

Armed with the previous result, we can extend to the subspace model. First, we embed the isotropic model in Theorem B.4
into a space of dimension d = d′ + dQ by appending dQ dimensions such that dQ/d → κQ. Similarly, we partition the
d′ dimensions into dP and dR dimensions scaling with κP and κR, respectively, and set c′ = d′/d. Define the projection
operators ΠQ for the added dimensions and ΠP and ΠR for the original dimensions, respectively. Because the ridge
regularization strength is positive, the learning problem in (1) with λ = λ′ + λ∗ for ΣP = 1

d (ΠP +ΠR) has the same
solution to that of (2) when restricted to the first d′ coordinates, and the solution is forced to 0 for the last dQ coordinates.

Now consider x ∈ Rd divided into the corresponding sub-vectors xP ∈ RdP , xQ ∈ RdQ , and xR ∈ RdR . Divide β∗ into
similarly partitioned β∗

P , β∗
Q, and β∗

R, and β̂ into β̂P and β̂R with β̂Q = 0. If x ∼ N (0, 1dI), then

(x⊤β∗,x⊤β̂) = (x⊤
Pβ

∗
P + x⊤

Qβ
∗
Q + x⊤

Rβ
∗
R,x

⊤
P β̂P + x⊤

Rβ̂R).

Note that we have independence of these terms across P , Q, and R. Considering a particular subspace, observe that

(x⊤
Pβ

∗
P ,x

⊤
P β̂P ) ∼ N

(
0,

[
1
dβ

∗⊤
P β∗

P
1
dβ

∗⊤
P β̂P

1
d β̂

⊤
P β

∗
P

1
d β̂

⊤
P β̂P

])

→ N
(
0,

[
κPσ

2
β ακPσ

2
β

ακPσ
2
β κP (α

2σ2
β + σ2

E)

])
.

Here convergence is in the sense that the covariance matrix converges almost surely thanks to pseudo-Lipschitz convergence
of order 2 of β∗ and β̂. This implies that

(x⊤
Pβ

∗
P ,x

⊤
P β̂P )

2⇒ (ZP , αZP + EP ),

where ZP ∼ N (0, κPσ
2
P ) and EP ∼ N (0, κPσ

2
E) are independent. An analogous result holds for x⊤

Rβ
∗
R and x⊤

Rβ̂R for
ZR ∼ N (0, κRσ

2
β) and ER ∼ N (0, κRσ

2
E). Therefore, for x ∼ N (0,ΣP ),

(x⊤β∗,x⊤β̂)
2⇒ (ZP + ZR, α(ZP + ZR) + EP + ER).

For distribution Q, observe that when x ∼ N (0,ΣQ), x⊤β = x̃⊤(s⊙ β) for x̃ ∼ N (0, ρd (ΠQ +ΠR)). By assumption,
E
[
S2B∗2] = E

[
B∗2] = σ2

β , so there is no change to the effect of β∗ for distribution Q. However, because E
[
S2
]
= ς2

which is not in general equal to one, there is a scaling of ς to the noise E. Adding the scaling factor ρ, we have for
x ∼ N (0,ΣQ) and ZQ ∼ N (0, κQσ

2
β),

(x⊤β∗,x⊤β̂)
2⇒ (

√
ρ(ZR + ZQ),

√
ρ(αZR + ςER)).

Letting θ =
√
ρκR/(κR + κP ), Z = ZP + ZR, E = EP + ER, and W =

√
ρZQ, we obtain the stated result.

B.3. Proof of Theorem 2.1

The proof for each metric of Theorem 2.1 is different, so we present each case separately. Both are direct consequences of
Lemma B.3.

B.3.1. MEAN SQUARED ERROR

For ψ(z∗, ẑ) = (z∗ − ẑ)2, we have the following relationship:

RQ(β̂) = E
[
((θZ +W )− θ(αZ + ςE))2

]
= E

[
(θZ − θ(αZ + E + (ς − 1)E))2

]
+ E

[
W 2
]

= θ2 E
[
(Z − (αZ + E))2

]
+ θ2(ς2 − 1)E [E] + E

[
W 2
]

= θ2 E
[
(θZ − θ(αZ + E))2

]
+ θ2(ς2 − 1)(κP + κR)σ

2
E + κQσ

2
β

= θ2RP (β̂) + θ2(ς2 − 1)(κP + κR)σ
2
E + κQσ

2
β .
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The dependence on σ2
E means that we do not have a relationship between RQ and RP in general. However, when the

distribution shift is task-independent—that is, when ς = 1—we have the simple linear relationship

RQ(β̂) = θ2RP (β̂) + κQσ
2
β .

B.3.2. MISCLASSIFICATION ERROR

For misclassification error, we first prove the following lemma.
Lemma B.5. For two zero-mean jointly Gaussian random variables X and Y ,

Pr(XY < 0) =
1

π
cos−1

(
E [XY ]√

E [X2]E [Y 2]

)
.

Proof. First define X̃ = X/
√
E [X2] and Ỹ = Y/

√
E [Y 2]. We can decompose Ỹ as:

Ỹ = E
[
X̃Ỹ

]
X̃ +

√
1− E

[
X̂Ỹ

]2
UY ,

where UY is a standard normal random variable. Observe that for any scalar a > 0,
{
X̃Ỹ < 0

}
=
{
aX̃Ỹ < 0

}
, so we

can jointly scale X̃ and UY without affecting the event, even if this scalar is random. Because X̃ and UY are independent
standard normal variables, this means we can choose a random variable Θ ∼ Uniform[0, 2π) such that

(cosΘ, sinΘ) =

 X̃√
X̃2 + U2

Y

,
UY√

X̃2 + U2
Y

 .

Now Pr(XY < 0) = Pr
(
X̃Ỹ < 0

)
= Pr

(
cosΘ

(
E
[
X̃Ỹ

]
cosΘ +

√
1− E

[
X̂Ỹ

]2
sinΘ

)
< 0

)
. This inequality is

satisfied for

Θ ∈ [0, 2π) ∩
∞⋃

n=−∞

(
(2n+ 1)π

2
,
(2n+ 1)π

2
+ cos−1

(
E
[
X̃Ỹ

]))
.

The size of each of the intervals in the union is cos−1
(
E
[
X̃Ỹ

])
, and twice the length of one such interval is included in

[0, 2π). Plugging in the definitions of X̃ and Ỹ therefore proves the claim.

For misclassification error, we can apply Lemma B.5:

RQ(β̂) = Pr((θZ +W )θ(αZ + ςE) < 0)

=
1

π
cos−1

 αρκRσ
2
β√(

ρκRσ2
β + ρκQσ2

β

)(
α2κRσ2

β + ς2κRσ2
E

)


=
1

π
cos−1

 1√(
1 +

κQ

κR

)(
1 +

ς2σ2
E

σ2
βα

2

)
 .

By an analogous argument,

RP (β̂) =
1

π
cos−1

 1√
1 +

σ2
E

σ2
βα

2

 =
1

π
tan−1

(
σE
σβα

)
.
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Both of these functions are increasing functions of σE/σβα, giving us the monotonically increasing relationship in the
theorem statement. RQ(β̂) is also increasing in κQ/κR and ς . This means that if ς ≥ 1,

RQ(β̂) > RP (β̂).

Moreover, in the limit as κQ/κR → 0+, RQ(β̂) =
1
π tan−1

(
ςσE

σβα

)
, giving us the final linear relationship.

B.4. Extension to General Separable Regularization Penalties

By Theorem B.4, the true parameter β∗ and its estimate β̂ empirically converge as

(β∗, β̂)
2⇒
(
B∗,Prox

cΩ̃

(
aB∗ + Ẽ

))
for some a, c > 0 and Ẽ ∼ N (0, σ̃2

E) that is independent of B∗. However, observe that in order to prove Lemma B.3, we
only need to determine the limits of terms of the form 1

d′ β̂
⊤
P β

∗
P and 1

d′β
∗⊤
P β∗

P . As d → ∞, we can find α, σE > 0 such
that:

1

d′
β̂⊤
P β

∗
P → κP E

[
B∗Prox

cΩ̃

(
aB∗ + Ẽ

)]
= κPασ

2
β

1

d′
β∗⊤
P β∗

P → κP E
[
Prox

cΩ̃

(
aB∗ + Ẽ

)2]
= κP (α

2σ2
β + σ2

E).

Concretely, we can use

α =
E
[
B∗Prox

cΩ̃

(
aB∗ + Ẽ

)]
σ2
β

, σ2
E = E

[
Prox

cΩ̃

(
aB∗ + Ẽ

)2]
− α2σ2

β .

As long as s(b) = 1, there is no further change, and the rest of the proof follows. Following Gerbelot et al. (2020), we can
let λ∗ → 0 using an analytic continuation when sufficient regularity assumptions on ℓ, Ω, and ψ are met in order to remove
the ridge regression component, extending our result to general separable penalties. However, for general s, the problems
are not equivalent to our previous formulation; instead of simply having a fixed E

[
s(B∗)2

]
, we must also evaluate

E
[
s(B∗)2B∗Prox

cΩ̃

(
aB∗ + Ẽ

)]
and E

[
s(B∗)2Prox

cΩ̃

(
aB∗ + Ẽ

)2]
,

which will not simplify to functions of α, σ2
E , and ς in general.


